sábado, 9 de novembro de 2013

Carga resistiva para testes de amplificadores

No passado, quando trabalhava com manutenção de eletrônicos, logo no inicio da profissão, optei por trabalhar com áudio mesmo que não desse muito retorno na época, era o que achava simples e fácil de entender e então os reparos, adaptações e criações sempre surtiam em um bom trabalho e os ouvidos agradeciam. Eis que me pego outro dia desenhando uma plaquinha de um amplificador antigo conhecido como OCL, muitos vão dizer que é isso e que é aquilo, mas a diferença é; fazer e curtir ou apenas não fazer e continuar afirmando que é ruim, mas os resultados são bem interessantes, e os "probleminhas" são facilmente contornados, e poderão acompanhar nos tópicos a seguir.



Teste de amplificador OCL transistores de saída para 100W em 2 Ohms. Sim o Trafo é de 5 Amperes :)
Notei logo de cara que há uma leve distorção quando o nível de sinal é baixo, coisa de 2 á 3 watts, devido a não conter o circuito de bias, porém outras vantagens são bem mais interessantes, como poucos componentes, não precisa de capacitor de acoplamento e nem de componentes com grandes voltagens, e quando não há sinal na entrada o consumo é zero, nos testes que venho realizando, notei que algumas frequências altas arranham os tweeters piezoelétricos, isso chega a dar uma gastura, mas com o volume aberto isso praticamente não acontece, e que também deve-se respeitar a impedância de entrada, dependendo da fonte de sinal, a distorção aparece ou não, e se a qualidade do áudio for ruim, vai resultar e um som amplificado ruim. Mas para quem curte um som eletrônico cheio de graves e subgraves, vai se surpreender com o resultado final desse amplificador.

Um dia antes desta postagem tirei o dia para resolver o problema da carga resistiva, revirei minhas gavetas, caixas, e gaveteiros e me deparei com dezenas de resistores de 8R2  por 7 watts, algumas continhas feitas e vi que facilmente teria um arranjo que funciona-se em 2, 4 e 8 Ohms, apenas combinando a ligação dos bornes em uma placa, ao todo foram 16 resistores, a potência final ficou, 2 e 8 Ohms para 112 watts e 2 canis de 4 ohms por 56 watts, isso para pequenos amplificadores ficou bem usual, e compacto, provavelmente coloque um dissipador sobre os resistores com uma refrigeração para dar algum tempinho a mais nos testes.

Bom até esse momento tinha em mãos, a fonte, a placa do amplificador e a placa da carga da carga, também foi preciso preparar os cabinhos e garras jacaré, nestas foram descartadas as borrachas e no lugar foi encolhido um pedaço de termo retrátil, sim elas continuam com pressão sobre os pinos que serão fixadas, mas elas só abriram coisa de 1 a 2 mm, o suficiente para um terminal de placa, com a vantagem de não encostar uma na outra.

As características dos itens:
- Fonte simétrica de 28V por 5A, diodos da fonte de 10A, capacitores de filtro com 9.400uF.
- Placa do amplificador com transistores para 100 Watts em 2 ohms.
- Placa da carga com potência de 112 Watts de dissipação.

Ainda faltou a fonte de sinal, pensei em construir um gerador de formas de ondas, ou até mesmo finalizar um outro a base de operacionais que tenho na bancada, mas...Lembrei dos vídeos do youtube com milhares de exemplos sonoros, a placa de som, é uma genérica "Onboard" da placa mãe M2N-X e a qualidade dos vídeos escolhidos fora de 480p, já a resolução da câmera que gravou...240p foi mau! Mas era apenas para mostrar o quanto é simples fazer, e que a maior parte da dificuldade fica por parte das teorias de que não dá certo, é ruim etc...

No vídeo poderão ver que aplicando um sinal de 0,7 V (sinal na placa de áudio) no amplificador na frequência de 100Hz na carga configurada para 2,1 ohms (na verdade era de 100Hz para 5Hz, mas cortei quando era uns 70Hz), obtive uma tensão AC de 16,5 volts que calculando pela lei de ohm (P= V*V/R) deu 272,5 volts / pela carga de 2,1 ohms com resultado de 129.64 Watts.

Claro que nesse valor tem uma grande distorção, não foi observada a forma de onda no osciloscópio, não foi tomada notas de uma série de coisas, mas fiz, está ai os resultados, o amplificador é para uma tensão de 35 volts simétricos e corrente de 3 amperes, minha fonte tem 7 volts a menos e isso deve ser levando em conta, mas se o amplificador é para 100 watts e obtivemos um valor de 129,64 watts com certeza o arranjo do amplificador dá sim os 100 watts  como o projeto propõe.

Nada conclusivo, mas prometo melhorar os aparatos e realizar outros teste e postar aqui, agora que é prazeroso ver tudo funcionando e poder apalpar os resultados, digo isso porque a carga resistiva é fantástica, dentro da potência que pode ser absorvida, ela não esquenta e nem esquenta o amplificador, mas se a potência a ela aplicada fora a mesma ou maior, em poucos segundos ferve tudo, agora fiquei curioso para fazer um teste com a resistência de chuveiro rsrs, posto o resultado.

Abraço.

domingo, 27 de outubro de 2013

Reutilizando ponteiras de multi-testes velhas e com pontas gastas.

Sempre me deparei com dezenas de pares de cabos de teste dos multímetros, com pontas desgastadas, seja pelo uso ou por acidentes, geralmente curto-circuito e lá se foi a pontinhas e o material que recobre as pontas, e dai em diante em poucas utilizações a ponta se corrói e acabamos por encostas as ponteiras.

A proposta a seguir é dar utilidade a elas, e com sobras de tubos termo retráteis que ficam pela bancada, dar um acabamento simples e eficaz já que só a ponta que nos interessa ficará a mostra, para fazer o furo, utilizei uma broca de 0,95 mm de aço rápido.


A primeira coisa a se fazer é um furo de 0,9mm ou 1,0mm pouco acima do ângulo da ponta, esse diâmetro é proposital, pois é a medida do pinos dos conectores sinal empregados nas placas do eletroeletrônicos e também a medida dos pinos das barrinhas de pinos que utilizamos nas montagens.


Notem que fácil até para prender componentes em medições ou testes, além de ser muito simples sua fixação nos pinos das placas, alguns pinos tem espessura diagonal de 0,8 mm se levamos em conta isso, podemos para as ponteiras com pontas mais finas utilizar uma broca de 0,8 mm, pois devemos levar em consideração o quanto vai ficar de estrutura nas laterais do furo, nas ponta de cobre, se ficar muito fina, se quebrará facilmente, também é recomendado fazer os furos prendendo as ponteira em um trono mecânico (morsa)

Utilizo estas ponteiras tanto para alimentação como para medições, assim é comum pendurar até 3 pares de ponta de testes sobre o equipamento e ficar com as mãos livres, para realizar outras medições e ou acionar outros equipamentos na bancada. Em alguns casos as ponteiras poderão ficar desajeitadas e ou girar e encostar uma na outra, para isso basta uma simples inversão de um ponteira para o outro lado e se resolve.

Boas idéias e até a próxima.

sexta-feira, 18 de outubro de 2013

Mini Amplificador de Áudio

Este artigo é inspirado na publicação da revista Saber Eletrônica edição de 1977, número 64, uma das primeiras revista de eletrônica que ganhei quando pequeno, na época esta revista já tinha 10 anos, mas estava inteirinha, e outro dia na mudança dos móveis na oficina, andei separando algumas revistas e artigos que acho interessante relembrar. 

O artigo é assinado pelo nosso saudoso e lendário Newton C. Braga, se quando comecei era o máximo tirar 1W de meia dúzia de componentes comuns, imaginem na década de 70, este pequeno amplificador fora vital para que fosse possível ouvir meus LPs, lembro de que era uma vitrola recuperada das baratas e que sobrara somente a caraça, a placa havia sido devorada, de posse da estrutura, foi fácil instalar duas pequenas plaquinhas (uma da revista) e outro feita com caneta retroprojetor, sim já fiz muito disso no passado.
O circuito em simetria complementar suporta 100mA e máximo de 12V, aonde é possível conseguir um 1W com boa qualidade, o interessante é que este circuito, no artigo tinha inúmeras aplicações, aonde alterando o ganho da etapa pré amplificadora, sua utilização iria de um toca-discos com capsula cerâmica, á rádio de ondas médias. Os valores dos componentes, recomendo adquirirem a revista, pois vale muito a pena, já para esta versão proposta, obtive um bom resultado com este valores abaixo, utilizando para testes na bancada, amplificador de desktop.

Lista de material: R1=220R, R2=330K, R3=15K, R4=330K, C1=100uF, C2=220uF, C3=10uF, C4=100nF, C5=2,2nF, D1 e D2=1N4148, Q1=BC557, Q2, Q3 e Q4= BC547.



Estou trabalhando na versão SMD, ainda me falta resolver a questão dos capacitores eletrolíticos, pois mesmo sendo em miniatura, são relativamente grandes, as imagens acima estão nas medidas corretas, 23,42x 26.59 mm, um desafio e tanto manusear uma montagem deste tamanhinho, o resultado vale muito o custo, em breve colocarei uma sequencia de fotos da montagem deste kit.

Boa montagem e até a próxima.

terça-feira, 24 de setembro de 2013

Capacitores Eletrolíticos

Cada capacitor eletrolítico no seu galho!

Hoje vou escrever sobre os capacitores eletrolíticos, mais precisamente os do fabricante SAMWHA que tem boa literatura e catalogo de seus produtos, aonde constam centenas de códigos e características que devem ser levadas em conta na hora de substituir e ou até medir estes componentes, novos ou estando nas placas do aparelho em manutenção.


Muitos técnicos ao se deparar com a imagem acima, já sai procurando uma capacitor de 1000uF por 10V para fazer logo a substituição, e logo após o aparelho continua com uma certa deficiência ou até mesmo volta com os capacitores estufados em um curto período de tempo. A alguns anos com a chegada massiva de equipamentos com fontes chaveadas, o técnico já se deparou com capacitores que tinham uma temperatura de trabalho maior, e ai passou-se a separar o trigo do joio, fonte chaveada é sinônimo de capacitor com temperatura de 105ºC, mas continuava a deixar passar outra informação importante.

Muitos afirmam que a marca tal, cor tal é melhor e não pifa logo, ledo engano, pois não é a marca em si, e sim o tipo de capacitor para a aplicação certa, e para isto temos uma sigla que determina a classe em que esse ou aquele capacitor pertence e poderá ser ou não utilizado naquele circuito, na imagem acima, notem que o capacitor a direita traz ao lado do logotipo do fabricante a sigla WB, ela é importante pois traz outras informações que não cabem ali no corpo do componente, e por isso agora caro leitor entenderá o porque que sempre cito, "consulte o datasheet"

No caso acima, o fabricante pode ter escolhido um componente de uso para um alto ripple, baixo ESR, mas com uma vida útil baixa, ou até mesmo utilizado um componente com um fator de temperatura baixo para as regiões mais quentes do Brasil. Muitos manuais de autorizadas mandam os técnicos removerem capacitores que tiverem com esta sigla, pois se o capacitor não estourou é porque vai estourar, isso não aconteceria se o fabricante do aparelho tivesse utilizado componentes com outros parâmetros, que aqui em nosso clima não se deteriorariam em tão pouco tempo,

No corpo do capacitor eletrolítico, está além do logotipo do fabricante, algumas informações, tomaremos por exemplo um capacitor da imagem abaixo que traz em seu corpo: SAMWHA (fabricante) RD (tipo de aplicação) 35V (voltagem máxima de trabalho) 2200uF (capacitância) 105ºC (temperatura máxima de trabalho) e "M" (tolerância +/- 20%).


Outro exemplo: Capacitância 470uF tensão de trabalho 50V temperatura de trabalho máximo 105ºC a letra (M) é a tolerância +/- 20%, classe MINI e a sigla "LZ" determina que ele é de baixa impedância (baixa ESR) longa vida, 10 mil horas de trabalho (mínimo de 6 mil á 8 mil) Indicado para fonte de médio Ripple.

Já outro de 470uF por 25V: com sigla MK é um capacitor destinado a fontes ruidosas com Ripple alto e tem vida útil de 5 mil horas, ou seja assim que der o prazo final da vida útil o capacitor vai começar a se degradar e irá perder sua capacitância, aumentar sua ESR, e passando da sua temperatura de trabalho junto a uma frequência alta vai estourar.

Outra fator importante é a relação ESR e capacitância, ambos são valores distintos e influenciam ou não, de acordo com sua utilização, assim é vital que se analise bem o porque foi utilizado este ou aquele capacitor eletrolítico, ou seja, se o circuito precisar de uma alta filtragem, necessitará de um eletrolítico de alta permeabilidade, e a diminuição da capacitância, deixará de filtrar ripple da tensão.

E um circuito de baixa impedância será afetado quando a ESR aumentar, deixando passar ruídos que afetaram o circuito, assim teremos alguns casos como capacitores com ESR alta mais com capacitância dentro de sua tolerância, considerada como bom, o inverso também pode ocorrer, um capacitor já com sua capacitância baixa, mas com ESR baixa.

No caso de capacitância baixa e ESR alta, se dá mais no caso de quando o componente já está se deteriorando por causa de uma alta temperatura e uma frequência alta bem próxima do seu limite especificado.

Bom espero ter atingido o objetivo do post que é de levar a informação, pouca mais preciosa, afim de alertar aos mais descuidados de que vale a pena gastar um tempinho a mais na manutenção e fazer a coisa certa e não ter dessabores nos serviços prestados.

Abraço e até mais...

terça-feira, 17 de setembro de 2013

Versão 2.08C Ponyprog

Não consta no site da Lancos, porém contém alguns itens que as demais não tem. Bons tempos estes, hoje vai ser difícil alguém ainda utilizar.


As versões mais recentes são para SO 32bits, se o seu Windows for 64, basta instalar o programa em um outro computador com o de 32bits, e copiar toda a pasta de onde foi instalado e colocar no mesmo diretório do seu Windows 64bits, criar o atalho do executável na área de trabalho e pronto, uma versão nova rodado no SO de 64bits.

quinta-feira, 12 de setembro de 2013

Amplificador Sinclair Z30

A muitos anos atrás era piração conseguir algumas dezenas de watts com poucos componentes simples encontrado na gaveta e sobre a bancada de serviço, para quem pretender montar suas placas o projetinho fora visto no fórum de eletrônica argentino.


Este amplificador foi criado em novembro de 1969, com certa de 20W RMS vendido em forma de kit HI-FI, chamados de Z-30, fabricado e distribuído pela Sinclair Radionics LTDA. Uma plaquinha com dimensões 75mm x 55mm pesando 34 gramas, utilizava meia dúzia de componentes simples e baratos.


Acimo fotos da placa original do Sinclair Z-30, alguns anos depois do lançamento fora lançada uma versão Z-50 que nada mais era que um versão optimizada com transistor de saída maiores, e tensão de trabalho maior, o diagrama acima é uma representação da versão antiga com componentes comuns no nosso dia a dia, eu mesmo tenho uma versão do Z-30 com layout para TIP 41, este se encontra no fórum citado no início do post.

Com base nos comentários do pessoal do fórum e da versão que montei, constatei de que há um problema com a realimentação em R4 o valor deve ser ajustado de acordo com os componentes utilizados, isso para evitar uma distorção que ocorre quando o sinal de entrada está bem baixo, quanto a qualidade sonora posso dizer que é boa, utilizo como amplificador no PC, não senti falta de potencia, pois são nada mais que 40 Watts de potência, algo bem maior do que a tradicionais caixinhas multimídia para desktop, notem que a versão do diagrama que coloco acima tem algumas modificações e será uma versão em SMD, em breve colocarei a versão da nova placa.

Boa montagem...

Fonte Ajustável com controle de corrente

A ÚNICA PISTA QUE INDICA SER DE UMA REVISTA DA ELEKTOR.


Aonde cheguei a edição 228 de 1999


Esta fonte foi inspirada em um artigo da Revista Elektor, basicamente é um um amplificador diferencial e um controle de corrente por realimentação, tudo transistoriza, e pode ser feito com componentes simples e encontrado em qualquer loja de componente e ou pode utilizar componentes de sucata mesmo, o resultado será surpreendente.
 O layout por se tratar de um arquivo antigo, apenas me restara as imagens JPG dos arquivos que mantinha em um PC antigo, mas há na imagem abaixo as dimensões da placa, é só ajustar o tamanho no CorelDraw e imprimir.

Abaixo o diagrama da parte principal do regulador de tensão e corrente, as demais partes podem ser observadas, assim como os valores dos componentes na primeira figura acima.
Acima o segundo arquivo com uma resolução maior (use as dimensões 11,65 x 8,40 cm)

Boa montagem e até a próxima



Adaptador ATmega QFP32 para dip 28 Estreito

Outro adaptador para os MCU ATmega de 32 pinos QFP, foi uma saída rápida, aonde precisava de um micro ATmega328 dip28, mas apenas tinha no estoque chips QFP32.

A placa contém a maioria dos pinos mais utilizados, creio que não deva ter ligados um ou dois pinos, porém se for da necessidade, pode-se ligar fios dos pinos do MCU ao pino do DIP, o PAD no meio da placa se refere a um jumper "000" tamanho 0805.